Механическая энергия математического маятника формула. Энергия колебательного движения. Превращение энергии. Циклическая частота и период колебаний математического маятника

Если тело, прикрепленное к пружине (рисунок 4), отклонить от положения равновесия на расстояние А, например, влево, то оно, пройдя через положение равновесия, отклонится вправо. Это следует из закона сохранения энергии.

Потенциальная энергия сжатой или растянутой пружины равна

где k - жесткость пружины и x - ее удлинение. В крайнем левом положении удлинение пружины x = - А, следовательно, потенциальная энергия равна

Кинетическая энергия в этот момент равна нулю, потому что нулю равна скорость. Значит, потенциальная энергия - это полная механическая энергия системы в этот момент. Если условиться, что сила трения равна нулю, а другие силы уравновешены, то нашу систему можно считать замкнутой и ее полная энергия при движении не может измениться. Когда тело при своем движении окажется в крайнем правом положении (x=А), Его кинетическая энергия снова будет равна нулю и полная энергия опять равна потенциальной. А полная энергия не может измениться. Значит, она снова равна

Это и означает, что и вправо тело отклонится на расстояние равное А.

В положении равновесия, напротив, потенциальная энергия равна нулю, потому что пружина не деформирована, х=0. В этом положении полная энергия тела равна его кинетической энергии

где m - масса тела и - его скорость (она в этот момент максимальна). Но эта кинетическая энергия тоже должна иметь значение равное. Следовательно, при колебательном движении происходит превращение кинетической энергии в потенциальную и обратно. В любой же точке между положениями равновесия и максимального отклонения тело обладает и кинетической энергией, и потенциальной, но их сумма, т.е. полная энергия в любом положении тела, равна. Полная механическая энергия W колеблющегося тела пропорциональна квадрату амплитуды и его колебаний

Маятники. Математический маятник

Маятником является всякое тело, подвешенное так, что его центр тяжести находится ниже точки подвеса. Значит груз, подвешенный на веревке, это колебательная система подобная маятнику настенных часов. У всякой системы, способной совершать свободные колебания, имеется устойчивое положение равновесия. У маятника - это то положение, при котором центр тяжести находится на вертикали под точкой подвеса. Если мы выведем маятник из этого положения или толкнем его, то он начнет колебаться, отклоняясь то в одну, то в другую сторону от положения равновесия. Мы знаем, что наибольшее отклонение от положения равновесия, до которого доходит маятник, называется амплитудой колебаний. Амплитуда определяется тем первоначальным отклонением или толчком, которым маятник был приведен в движение. Это свойство - зависимости амплитуды от условий в начале движения - характерно не только для свободных колебаний маятника, но и вообще для свободных колебаний очень многих колебательных систем.

Период колебаний физического маятника зависит от многих обстоятельств: от размеров и формы тела, от расстояния между центром тяжести и точкой подвеса и от распределения массы тела относительно этой точки; поэтому вычисление периода подвешенного тела - довольно сложная задача. Проще обстоит дело для математического маятника. Математическим маятником называется подвешенный к тонкой нити груз, размеры которого много меньше длины нити, а его масса манного больше массы нити. Это значит, что тело (груз) и нить должны быть такими, чтобы груз можно было считать материальной точкой, а нить невесомой. Из наблюдений над подобными маятниками можно установить следующие простые законы.

1. Если, сохраняя одну и ту же длину маятника (расстояние от точки подвеса до центра тяжести груза), подвешивать разные грузы, то период колебаний получится один и тот же, хотя массы грузов сильно различаются. Период математического маятника не зависит от массы груза.

2. Сида, действующая на тело в любой точке траектории, направлена к положению равновесия, а в самой точке равновесия равна нулю.

3. Сила пропорциональна отклонению тела от положения равновесия.

Рис. 5.

4. Если при пуске маятника отклонять его на разные (но не слишком большие) углы, то он будет колебаться с одним и тем же периодом, хотя и с разными амплитудами. Пока не слишком велики амплитуды, колебания достаточно близки по своей форме к гармоническим, и период математического маятника не зависит от амплитуды колебаний. Это свойство называется изохронизмом (от греческих слов «изос» - равный, «хронос» - время).

Впервые этот факт был установлен в 1655 г. Галилеем якобы при следующих обстоятельствах. Галилей наблюдал в Пизанском соборе качания паникадила (в православном храме центральная люстра, светильник со множеством свечей или лампад) на длинной цепи, которое толкнули при зажигании. В течение богослужения размахи качаний постепенно затухали (глава 8), т. е. амплитуда колебаний уменьшалась, но период оставался одним и тем же. В качестве указателя времени Галилей пользовался собственным пульсом.

Это свойство маятника оказалось не только удивительным, но и полезным. Галилей предложил использовать маятник в качестве регулятора в часах. Во времена Галилея часы приводились в действие грузом, а для регулировки хода применялось грубое приспособление типа лопастей ветряной мельницы, которое использовало сопротивление воздуха. Для отсчета равных промежутков времени можно было бы использовать маятник, ибо малые колебания совершаются за то же время, что и большие, вызываемые случайными порывами ветра. Столетие спустя после Галилея часы с маятниковым регулятором вошли в обиход, но мореплаватели по-прежнему нуждались в точных часах для измерения долготы на море. Была объявлена премия за создание таких морских часов, которые позволяли бы измерять время с достаточной точностью. Премию получил Гариссон за хронометр, в котором для регулирования хода использовались маховое колесо (баланс) и специальная пружина.

Выведем теперь формулу для периода колебаний математического маятника.

При качаниях маятника груз движется ускоренно по дуге ВА (рис. 5, а) под действием возвращающейся силы P 1 , которая меняется при движении.

Расчет движения тела под действием непостоянной силы довольно сложен. Поэтому для упрощения поступим следующим образом.

Заставим маятник совершать не колебание в одной плоскости, а описывать конус так, чтобы груз двигался по окружности (рис. 5, б). Это движение может быть получено в результате сложения двух независимых колебаний: одного - по-прежнему в плоскости рисунка и другого - в перпендикулярной плоскости. Очевидно, периоды обоих этих плоских колебаний одинаковы, так как любая плоскость качаний ничем не отличается от всякой другой. Следовательно, и период сложного движения - обращения маятника по конусу - будет тот же, что и период качания в одной плоскости. Этот вывод можно легко иллюстрировать непосредственным опытом, взяв два одинаковых маятника и сообщив одному из них качание в плоскости, а другому - вращение по конусу.

Но период обращения «конического» маятника равен длине описываемой грузом окружности, деленной на скорость:

Если угол отклонения от вертикали невелик (малые амплитуды!), то можно считать, что возвращающаяся сила Р 1 направлена по радиусу окружности ВС, т. е. равна центростремительной силе:

С другой стороны, из подобия треугольников ОВС и DBE следует, что ВЕ: BD=CB: OB. Так как ОВ=l, CB=r, BE=P 1 , то отсюда

Приравняв оба выражения Р 1 друг к другу, мы получаем для скорости обращения

Наконец, подставив это в выражение периода Т, находим

Итак, период математического маятника зависит только от ускорения свободного падения g и от длины маятника l, т. е. расстояния от точки подвеса до центра тяжести груза. Из полученной формулы следует, что период маятника не зависит от его массы и от амплитуды (при условии, что она достаточно мала). Другими словами, получились путем расчета те основные законы, которые были установлены ранее из наблюдений.

Но этот теоретический вывод дает нам больше: он позволяет установить количественную зависимость между периодом маятника, его длиной и ускорением свободного падения. Период математического маятника пропорционален корню квадратному из отношения длины маятника к ускорению свободного падения. Коэффициент пропорциональности равен 2?.

На зависимости периода маятника от ускорения свободного падения основан очень точный способ определения этого ускорения. Измерив длину маятника l и определив из большого числа колебаний период Т, мы можем вычислить с помощью полученной формулы g. Этот способ широко используется не практике.

маятник колебание резонанс координата

10.4. Закон сохранения энергии при гармонических колебаниях

10.4.1. Сохранение энергии при механических гармонических колебаниях

Сохранение энергии при колебаниях математического маятника

При гармонических колебаниях полная механическая энергия системы сохраняется (остается постоянной).

Полная механическая энергия математического маятника

E = W k + W p ,

где W k - кинетическая энергия, W k = = mv 2 /2; W p - потенциальная энергия, W p = mgh ; m - масса груза; g - модуль ускорения свободного падения; v - модуль скорости груза; h - высота подъема груза над положением равновесия (рис. 10.15).

При гармонических колебаниях математический маятник проходит ряд последовательных состояний, поэтому целесообразно рассмотреть энергию математического маятника в трех положениях (см. рис. 10.15):

Рис. 10.15

1) в положении равновесия

потенциальная энергия равна нулю; полная энергия совпадает с максимальной кинетической энергией:

E = W k max ;

2) в крайнем положении (2 ) тело поднято над исходным уровнем на максимальную высоту h max , поэтому потенциальная энергия также максимальна:

W p max = m g h max ;

кинетическая энергия равна нулю; полная энергия совпадает с максимальной потенциальной энергией:

E = W p max ;

3) в промежуточном положении (3 ) тело обладает мгновенной скоростью v и поднято над исходным уровнем на некоторую высоту h , поэтому полная энергия представляет собой сумму

E = m v 2 2 + m g h ,

где mv 2 /2 - кинетическая энергия; mgh - потенциальная энергия; m - масса груза; g - модуль ускорения свободного падения; v - модуль скорости груза; h - высота подъема груза над положением равновесия.

При гармонических колебаниях математического маятника полная механическая энергия сохраняется:

E = const.

Значения полной энергии математического маятника в трех его положениях отражены в табл. 10.1.

Положение W p W k E = W p + W k
1 Равновесие 0 m v max 2 / 2 m v max 2 / 2
2 Крайнее mgh max 0 mgh max
3 Промежуточное (мгновенное) mgh mv 2 /2 mv 2 /2 + mgh

Значения полной механической энергии, представленные в последнем столбце табл. 10.1, имеют равные значения для любых положений маятника, что является математическим выражением :

m v max 2 2 = m g h max ;

m v max 2 2 = m v 2 2 + m g h ;

m g h max = m v 2 2 + m g h ,

где m - масса груза; g - модуль ускорения свободного падения; v - модуль мгновенной скорости груза в положении 3 ; h - высота подъема груза над положением равновесия в положении 3 ; v max - модуль максимальной скорости груза в положении 1 ; h max - максимальная высота подъема груза над положением равновесия в положении 2 .

Угол отклонения нити математического маятника от вертикали (рис. 10.15) определяется выражением

cos α = l − h l = 1 − h l ,

где l - длина нити; h - высота подъема груза над положением равновесия.

Максимальный угол отклонения α max определяется максимальной высотой подъема груза над положением равновесия h max:

cos α max = 1 − h max l .

Пример 11. Период малых колебаний математического маятника равен 0,9 с. На какой максимальный угол от вертикали будет отклоняться нить, если, проходя положение равновесия, шарик движется со скоростью, равной 1,5 м/с? Трение в системе отсутствует.

Решение . На рисунке показаны два положения математического маятника:

  • положение равновесия 1 (характеризуется максимальной скоростью шарика v max);
  • крайнее положение 2 (характеризуется максимальной высотой подъема шарика h max над положением равновесия).

Искомый угол определяется равенством

cos α max = l − h max l = 1 − h max l ,

где l - длина нити маятника.

Максимальную высоту подъема шарика маятника над положением равновесия найдем из закона сохранения полной механической энергии.

Полная энергия маятника в положении равновесия и в крайнем положении определяется следующими формулами:

  • в положении равновесия -

E 1 = m v max 2 2 ,

где m - масса шарика маятника; v max - модуль скорости шарика в положении равновесия (максимальная скорость), v max = 1,5 м/с;

  • в крайнем положении -

E 2 = mgh max ,

где g - модуль ускорения свободного падения; h max - максимальная высота подъема шарика над положением равновесия.

Закон сохранения полной механической энергии:

m v max 2 2 = m g h max .

Выразим отсюда максимальную высоту подъема шарика над положением равновесия:

h max = v max 2 2 g .

Длину нити определим из формулы для периода колебаний математического маятника

T = 2 π l g ,

т.е. длина нити

l = T 2 g 4 π 2 .

Подставим h max и l в выражение для косинуса искомого угла:

cos α max = 1 − 2 π 2 v max 2 g 2 T 2

и произведем вычисление с учетом приблизительного равенства π 2 = 10:

cos α max = 1 − 2 ⋅ 10 ⋅ (1,5) 2 10 2 ⋅ (0,9) 2 = 0,5 .

Отсюда следует, что максимальный угол отклонения составляет 60°.

Строго говоря, при угле 60° колебания шарика не являются малыми и пользоваться стандартной формулой для периода колебаний математического маятника неправомерно.

Сохранение энергии при колебаниях пружинного маятника

Полная механическая энергия пружинного маятника складывается из кинетической энергии и потенциальной энергии:

E = W k + W p ,

где W k - кинетическая энергия, W k = mv 2 /2; W p - потенциальная энергия, W p = k (Δx ) 2 /2; m - масса груза; v - модуль скорости груза; k - коэффициент жесткости (упругости) пружины; Δx - деформация (растяжение или сжатие) пружины (рис. 10.16).

В Международной системе единиц энергия механической колебательной системы измеряется в джоулях (1 Дж).

При гармонических колебаниях пружинный маятник проходит ряд последовательных состояний, поэтому целесообразно рассмотреть энергию пружинного маятника в трех положениях (см. рис. 10.16):

1) в положении равновесия (1 ) скорость тела имеет максимальное значение v max , поэтому кинетическая энергия также максимальна:

W k max = m v max 2 2 ;

потенциальная энергия пружины равна нулю, так как пружина не деформирована; полная энергия совпадает с максимальной кинетической энергией:

E = W k max ;

2) в крайнем положении (2 ) пружина имеет максимальную деформацию (Δx max), поэтому потенциальная энергия также имеет максимальное значение:

W p max = k (Δ x max) 2 2 ;

кинетическая энергия тела равна нулю; полная энергия совпадает с максимальной потенциальной энергией:

E = W p max ;

3) в промежуточном положении (3 ) тело обладает мгновенной скоростью v , пружина имеет в этот момент некоторую деформацию (Δx ), поэтому полная энергия представляет собой сумму

E = m v 2 2 + k (Δ x) 2 2 ,

где mv 2 /2 - кинетическая энергия; k (Δx ) 2 /2 - потенциальная энергия; m - масса груза; v - модуль скорости груза; k - коэффициент жесткости (упругости) пружины; Δx - деформация (растяжение или сжатие) пружины.

При смещении груза пружинного маятника от положения равновесия на него действует возвращающая сила , проекция которой на направление движения маятника определяется формулой

F x = −kx ,

где x - смещение груза пружинного маятника от положения равновесия, x = ∆x , ∆x - деформация пружины; k - коэффициент жесткости (упругости) пружины маятника.

При гармонических колебаниях пружинного маятника полная механическая энергия сохраняется:

E = const.

Значения полной энергии пружинного маятника в трех его положениях отражены в табл. 10.2.

Положение W p W k E = W p + W k
1 Равновесие 0 m v max 2 / 2 m v max 2 / 2
2 Крайнее k (Δx max) 2 /2 0 k (Δx max) 2 /2
3 Промежуточное (мгновенное) k (Δx ) 2 /2 mv 2 /2 mv 2 /2 + k (Δx ) 2 /2

Значения полной механической энергии, представленные в последнем столбце таблицы, имеют равные значения для любых положений маятника, что является математическим выражением закона сохранения полной механической энергии :

m v max 2 2 = k (Δ x max) 2 2 ;

m v max 2 2 = m v 2 2 + k (Δ x) 2 2 ;

k (Δ x max) 2 2 = m v 2 2 + k (Δ x) 2 2 ,

где m - масса груза; v - модуль мгновенной скорости груза в положении 3 ; Δx - деформация (растяжение или сжатие) пружины в положении 3 ; v max - модуль максимальной скорости груза в положении 1 ; Δx max - максимальная деформация (растяжение или сжатие) пружины в положении 2 .

Пример 12. Пружинный маятник совершает гармонические колебания. Во сколько раз его кинетическая энергия больше потенциальной в тот момент, когда смещение тела из положения равновесия составляет четверть амплитуды?

Решение . Сравним два положения пружинного маятника:

  • крайнее положение 1 (характеризуется максимальным смещением груза маятника от положения равновесия x max);
  • промежуточное положение 2 (характеризуется промежуточными значениями смещения от положения равновесия x и скорости v →).

Полная энергия маятника в крайнем и промежуточном положениях определяется следующими формулами:

  • в крайнем положении -

E 1 = k (Δ x max) 2 2 ,

где k - коэффициент жесткости (упругости) пружины; ∆x max - амплитуда колебаний (максимальное смещение от положения равновесия), ∆x max = A ;

  • в промежуточном положении -

E 2 = k (Δ x) 2 2 + m v 2 2 ,

где m - масса груза маятника; ∆x - смещение груза от положения равновесия, ∆x = A /4.

Закон сохранения полной механической энергии для пружинного маятника имеет следующий вид:

k (Δ x max) 2 2 = k (Δ x) 2 2 + m v 2 2 .

Разделим обе части записанного равенства на k (∆x ) 2 /2:

(Δ x max Δ x) 2 = 1 + m v 2 2 ⋅ 2 k Δ x 2 = 1 + W k W p ,

где W k - кинетическая энергия маятника в промежуточном положении, W k = mv 2 /2; W p - потенциальная энергия маятника в промежуточном положении, W p = k (∆x ) 2 /2.

Выразим из уравнения искомое отношение энергий:

W k W p = (Δ x max Δ x) 2 − 1

и рассчитаем его значение:

W k W p = (A A / 4) 2 − 1 = 16 − 1 = 15 .

В указанный момент времени отношение кинетической и потенциальной энергий маятника равно 15.

Математический маят­ник - это материальная точка, подвешенная на невесомой и нерас­тяжимой нити, находящейся в поле тяжести Земли. Математический маятник - это идеализированная модель, правильно описывающая реальный маятник лишь при определенных условиях. Реальный ма­ятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь.

Колебательную систему в данном случае образуют нить, присо­единенное к ней тело и Земля, без которой эта система не могла бы служить маятником.

где а х ускорение, g – ускорение свободного падения, х - смещение, l – длина нити маятника.

Это уравнение называется урав­нением свободных колебаний математического маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

2) рассматриваются лишь малые колебания маятника с небольшим углом размаха.

Свободные колебания любых систем во всех слу­чаях описываются аналогичными уравнениями.

Причинами свободных колебаний математическо­го маятника являются:

1. Действие на маятник силы натяжения и силы тяжести, пре­пятствующей его смещению из положения равновесия и заставляю­щей его снова опускаться.

2. Инертность маятника, благодаря которой он, сохраняя свою скорость, не останавливается в положении равновесия, а проходит через него дальше.

Период свободных колебаний математического ма­ятника

Период свободных колебаний математического маятника не за­висит от его массы, а определяется лишь длиной нити и ускорением свободного падения в том месте, где находится маятник.

Превращение энергии при гармонических колебаниях

При гармонических колебаниях пружинного маятника проис­ходят превращения потенциальной энергии упруго деформированного тела в его кинетическую энергию , гдеk коэффициент упругости,х - модуль смещения маятника из поло­жения равновесия,m - масса маятника,v - его скорость. В соот­ветствии с уравнением гармонических колебаний:

, .

Полная энергия пружинного маятника:

.

Полная энергия для математического маятника:

В случае математического маятника

Превращения энергии при колебаниях пружинного маятника происходи в соответствии с законом сохранения механической энергии (). При движении маятника вниз или вверх от положения равновесия его потенциальная энергия увеличивается, а кинетическая - уменьшается. Когда маятник проходит положение равно­весия (х = 0), его потенциальная энергия равна нулю и кинетическая энергия маятника имеет наибольшее значение, равное его полной энергии.

Таким образом, в процессе свободных колебаний маятника его потенциальная энергия превращается в кинетическую, кинетическая в потенциальную, потенциальная затем снова в кинетическую и т. д. Но полная механическая энергия при этом остается неизменной.

Вынужденные колебания. Резонанс.

Колебания, происходящие под действием внеш­ней периодической силы, называются вынужден­ными колебаниями . Внешняя периодическая си­ла, называемая вынуждающей, сообщает колеба­тельной системе дополнительную энергию, которая идет на восполнение энергетических потерь, проис­ходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или коси­нуса, то вынужденные колебания будут гармониче­скими и незатухающими.

В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из со­стояния равновесия), в случае вынужден­ных колебаний система поглощает эту энергию от источника внешней периоди­ческой силы непрерывно. Эта энергия восполняет потери, расходуемые на пре­одоление трения, и потому полная энергия колебательной системы no-прежнему ос­тается неизменной.

Частота вынужденных колебаний равна часто­те вынуждающей силы . В случае, когда частота вынуждающей силы υ совпадает с собственной ча­стотой колебательной системы υ 0 , происходит рез­кое возрастание амплитуды вынужденных колеба­ний - резонанс . Резонанс возникает из-за того, что при υ = υ 0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает по­ложительную работу: энергия колеблющегося те­ла увеличивается, и амплитуда его колебаний ста­новится большой. График зависимости амплитуды вынужденных колебаний А т от частоты вынужда­ющей силы υ представлен на рисунке, этот график называется резонансной кривой:

Явление резонанса играет большую роль в ря­де природных, научных и производственных про­цессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Поделиться: